

Status of TPC/HBD for PHENIX

Craig Woody BNL

DC Upgrades Meeting May 10 2002

Issues for the TPC/HBD PHENIX Upgrade

Need to prepare PHENIX LOI

Input to RHIC II CD-0 document (draft due 7/31/02) BNL R&D proposal (due 9/20/02)

∠ Physics Issues

- Measurement of low mass electron pairs and vector mesons
 Weizmann HBD proposal (June 2001) lays out a strategy for Dalitz rejection needed to do this, but we need to state the *physics case* for making this measurement, including issues of rates, triggering, etc.
 (physics discussed by Itzhak in several talks, Tony's thoughts on trigger...)
- Providing a new inner tracking detector for PHENIX
 Need to make the case for improving global PHENIX tracking with an inner tracking detector (to do this right requires a detailed Monte Carlo)

∠ R&D Issues

Interplay Between the TPC/HBD and the New Proposed Silicon Vertex & Tracking Detector

- The silicon vertex and tracking detector potentially adds a significant amount of material in front of the HBD which will increase the background for the electron pair measurement (see Christine Aidala's results)
- Can we provide the same level of *tracking* with the TPC with less mass, use it *in combination* with the HBD for the electron pair measurement, and get by with only a silicon *vertex detector*?
- Must agree on geometrical boundaries for both detectors (e.g.r_{min})
- Can the silicon strip/pad tracking detector work for heavy ions?

Multiplicities/event

Min. 5 hits/track required in TPC from PISA; no field

Particle species	EXODUS (averaged over 1000 evts)	+ beampipe and nosecones (1000 evts)	+ TPC/HBD (1000 evts)	TPC/HBD + 4 layers 1% X ₀ Si (1000 evts)	TPC/HBD + 4 layers 2%X ₀ Si (1000 evts)
All charged	1096.1	1107.3	1122.0	1161.7	1207.0
p/p-bar	57.6	58.6	60.4	63.4	65.3
K+-	92.7	92.1	92.3	90.5	89.2
pi+-	933.0	936.4	943.4	931.2	922.2
e+-	12.7 (9.1 Dalitz)	18.6	25.8	76.6	130.3

e+- Multiplicities/event hitting HBD

Averaged over 200 events	No Si	Si
No field (Tracking down to 1 MeV)	19.5	50.1
No field (Tracking down to 10 MeV)	17.5	43.9
No field (Tracking down to 20 MeV)	16.3	42.3
Field (Tracking down to 1 MeV)	28.4	59.8
Field (Tracking down to 10 MeV)	25.3	56.5
Field (Tracking down to 20 MeV)	22.6	51.6

Occupancy of HBD: 1%X₀ Silicon

C.Aidala, UWG, 4/18/02

The TPC as an Inner Tracking Detector in PHENIX

- Expect dp/p ~ 2% (300 mm or better space points, ~35 pad layers)
- Would provide tracking resolution comparable with the silicon tracker over 2p in azimuth and |h| < 1
- Tracking through the central field (in normal running conditions)
 would give better rejection against false high p_T tracks
 - second independent momentum measurement
 - can observe decays, conversions, etc...
- Tracking through the highly non-uniform "field free region" would give better association of Cherenkov "blobs" with electrons in the HBD
 - field would be optimized to measure low momentum tracks
 - could make effective mass cut rather than just opening angle cut
 - provides dE/dx information for e/p separation for p< 200 MeV/c

Charged High-p_T Analysis (2)

- The bad news
- Brian Cole, Core Week Plenary, 5/8/02
- Substantial background above ? (6) GeV/c.
- HIJING Monte-Carlo (100K events)
 - Low momentum photons, hadrons produce high-momentum reconstructed tracks

Field map, inner region (r < 80 cm)

R&D Issues for the PHENIX TPC/HBD

- GEM performance
- proposed to be used in both TPC and HBD
- current study has shown some effects which need to be understood (see Bo Yu's results)
- how to get potentially excellent spatial resolution for the TPC in a cost effective way; needs a careful design of the readout plane + readout electronics
- need to study and learn to build GEMs with CsI photocathodes (study under way – B. Azmoun)
- Need to understand the ExB effect in the TPC for drifting charge in the non-uniform magnetic field and it's effect on pattern recognition

Double GEM Detetor Schematic Cross Section

(with resistive divider)

 $V_{GEM} \sim 15\% V_{W}$

B.Yu, UWG, 4/16/02

Most Probable Pulse Height vs X-ray Position

A set of 4 adjacent strips 0.4mm pitch

Initial Charging Up of the GEM

Ar+20% CO₂, 5.4 keV x-rays (~1mm², 4kHz), Qa~0.025pC E_{GEM1} =260V, V_{GEM2} =440V, E_{d} =200V/cm, E_{t} =4kV/cm, E_{i} =5kV/cm

Time [minute]

B.Yu, UWG, 4/16/02

Double GEM Gas Gain Uniformity

Collimated 5.4 keV X-ray, at 2mm x 2mm grid, 9cm x 9 cm area

B.Yu, UWG, 4/16/02

Photo Peak Position vs Exposure Time and Beam Position

(5.4keV x-rays, 0.1mmx0.5?mm, 3kV, ~0.07pC, 4kHz flux)

Electronics Issues for the PHENIX TPC/HBD

- A significant effort will be required to developing new readout electronics for the TPC
 - new front end ASIC design
 - new FEM which will include zero suppression (same for silicon)
 - will probably take at least 2-3 years (once we get started)
 - will probably cost several \$M
- Electronics for the HBD may be simpler, but will also require a fair amount of development
 - lower noise due to smaller primary signal, larger pads,...
 - must be low mass (part will sit in the PHENIX acceptance)

Manpower Issues for the PHENIX TPC/HBD

Institutions presently involved with this project

- BNL (Physics, Instrumentation)
- Weizmann
- Stony Brook
- Columbia
- University of Tokyo (CNS)
- Yale (STAR)
- LBL (STAR)
- New postdoc (Sasha Milov) coming to Stony Brook in June and will spend a fair fraction of his time working on upgrades
- Plan to hire a new BNL postdoc starting next FY to work on upgrades
- Hope to support new engineering effort starting next FY